A comparison between Neumann and Steklov eigenvalues

نویسندگان

چکیده

This paper is devoted to a comparison between the normalized first (non-trivial) Neumann eigenvalue $|\Omega| \mu\_1(\Omega)$ for Lipschitz open set $\Omega$ in plane and Steklov $P(\Omega) \sigma\_1(\Omega)$. More precisely, we study ratio $F(\Omega):=|\Omega| \mu\_1(\Omega)/P(\Omega) We prove that this can take arbitrarily small or large values if do not put any restriction on class of sets $\Omega$. Then restrict ourselves convex domains which get explicit bounds. also case thin give more precise The finishes with plot corresponding Blaschke–Santaló diagrams $(x,y)=(|\Omega| \mu\_1(\Omega), P(\Omega) \sigma\_1(\Omega) )$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Steklov-Neumann boundary value problems

We will study a class of Steklov-Neumann boundary value problems for some quasilinear elliptic equations. We obtain result ensuring the existence of solutions when resonance and nonresonance conditions occur. The result was obtained by using variational arguments.

متن کامل

Inequalities between Dirichlet and Neumann Eigenvalues on the Heisenberg Group

Universal eigenvalue inequalities are a classical topic in the spectral theory of differential operators. Most relevant to our work here are comparison theorems between the Dirichlet and Neumann eigenvalues λj(−∆Ω ) and λj(−∆Ω ), j ∈ N, of the Laplacian in a smooth, bounded domain Ω ⊂ R. Note that λj(−∆Ω ) ≤ λj(−∆Ω ) for all j ∈ N by the variational characterization of eigenvalues. This trivial...

متن کامل

Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues

This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...

متن کامل

On Principal Eigenvalues for Periodic Parabolic Steklov Problems

LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...

متن کامل

Maximising Neumann eigenvalues on rectangles

We obtain results for the spectral optimisation of Neumann eigenvalues on rectangles in R with a measure or perimeter constraint. We show that the rectangle with measure 1 which maximises the k’th Neumann eigenvalue converges to the unit square in the Hausdorff metric as k → ∞. Furthermore, we determine the unique maximiser of the k’th Neumann eigenvalue on a rectangle with given perimeter. AMS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of spectral theory

سال: 2023

ISSN: ['1664-039X', '1664-0403']

DOI: https://doi.org/10.4171/jst/429